Targeted therapy for human hepatic carcinoma cells using folate-functionalized polymeric micelles loaded with superparamagnetic iron oxide and sorafenib in vitro
نویسندگان
چکیده
BACKGROUND The purpose of this study was to evaluate the inhibitory effect of targeted folate-functionalized micelles containing superparamagnetic iron oxide nanoparticles (SPIONs) and sorafenib on human hepatic carcinoma (HepG2) cells in vitro, and to observe the feasibility of surveillance of this targeting therapeutic effect by magnetic resonance imaging. METHODS Sorafenib and SPIONs were loaded into polymeric micelles. The targeted nanocarrier was synthesized by functionalizing the micelles with folate. Folate-free micelles loaded with sorafenib and SPIONs were used as control (nontargeted) micelles. Uptake of the nanocarrier by cells was assessed using Prussian blue staining after 1 hour of incubation with the polymeric micelles. The inhibitory effect of the targeted micelles on HepG2 cell proliferation at various concentrations of sorafenib was assessed in vitro using the methyl thiazolyl tetrazolium (MTT) assay and apoptotic analysis using flow cytometry. Magnetic resonance imaging using a clinical 1.5 T scanner was performed to detect changes in the signal intensity of cells after incubation with the targeted micelles. RESULTS Prussian blue staining showed significantly more intracellular SPIONs in cells incubated with the targeted micelles than those incubated with nontargeted micelles. The MTT assay showed that the average inhibitory ratio in the targeted group was significantly higher than that in the nontargeted group (38.13% versus 22.54%, P = 0.028). The mean apoptotic rate in the targeted cells, nontargeted cells, and untreated cells was 17.01%, 11.04%, and 7.89%, respectively. The apoptotic rate in the targeted cells was significantly higher than that in the nontargeted cells (P = 0.043). The T2 signal intensity on magnetic resonance imaging of cells treated with the targeted micelles decreased significantly with increasing concentrations of sorafenib in the cell culture medium, but there was no obvious decrease in signal intensity in cells treated with the nontargeted micelles. CONCLUSION Folate-functionalized polymeric micelles loaded with SPIONs and sorafenib inhibited proliferation and induced apoptosis of HepG2 cells in vitro. The inhibitory events caused by targeted micelles can be monitored using clinical magnetic resonance.
منابع مشابه
Synthesis and in vitro experiments of carcinoma vascular endothelial targeting polymeric nano-micelles combining small particle size and supermagnetic sensitivity
Objective: To construct carcinoma vascular endothelial-targeted polymeric nanomicelles with high magnetic resonance imaging (MRI) sensitivity and to evaluate their biological safety and in vitro tumor-targeting effect, and to monitor their feasibility using clinical MRI scanner. Method: Amphiphilic block copolymer, poly(ethylene glycol)-b-poly(ε-caprolactone) (PEG-PCL) was synthesized via the r...
متن کاملFolate-functionalized polymeric micelles for tumor targeted delivery of a potent multidrug-resistance modulator FG020326.
To overcome multidrug resistance (MDR) existing in tumor chemotherapy, polymeric micelles encoded with folic acid on the micelle surface were prepared with the encapsulation of a potent MDR modulator, FG020326. The micelles were fabricated from diblock copolymers of poly(ethylene glycol) (PEG) and biodegradable poly(epsilon-caprolactone) (PCL) with folate attached to the distal ends of PEG chai...
متن کاملHigh molecular weight chitosan derivative polymeric micelles encapsulating superparamagnetic iron oxide for tumor-targeted magnetic resonance imaging
Magnetic resonance imaging (MRI) contrast agents based on chitosan derivatives have great potential for diagnosing diseases. However, stable tumor-targeted MRI contrast agents using micelles prepared from high molecular weight chitosan derivatives are seldom reported. In this study, we developed a novel tumor-targeted MRI vehicle via superparamagnetic iron oxide nanoparticles (SPIONs) encapsula...
متن کاملMultifunctional polymeric micelles as cancer-targeted, MRI-ultrasensitive drug delivery systems.
We describe the development of multifunctional polymeric micelles with cancer-targeting capability via alpha(v)beta(3) integrins, controlled drug delivery, and efficient magnetic resonance imaging (MRI) contrast characteristics. Doxorubicin and a cluster of superparamagnetic iron oxide (SPIO) nanoparticles were loaded successfully inside the micelle core. The presence of cRGD on the micelle sur...
متن کاملFolate-targeted polymeric micelles loaded with ultrasmall superparamagnetic iron oxide: combined small size and high MRI sensitivity
Targeted delivery of contrast agents is a highly desirable strategy for enhancing diagnostic efficiency and reducing side effects and toxicity. Water-soluble and tumor-targeting superparamagnetic iron oxide nanoparticles (SPIONs) were synthesized by loading hydrophobic SPIONs into micelles assembled from an amphiphilic block copolymer poly(ethylene glycol)- poly(ε-caprolactone) (PEG-PCL) bearin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2013